90 research outputs found

    Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes

    Full text link
    During the last half decade, convolutional neural networks (CNNs) have triumphed over semantic segmentation, which is one of the core tasks in many applications such as autonomous driving. However, to train CNNs requires a considerable amount of data, which is difficult to collect and laborious to annotate. Recent advances in computer graphics make it possible to train CNNs on photo-realistic synthetic imagery with computer-generated annotations. Despite this, the domain mismatch between the real images and the synthetic data cripples the models' performance. Hence, we propose a curriculum-style learning approach to minimize the domain gap in urban scenery semantic segmentation. The curriculum domain adaptation solves easy tasks first to infer necessary properties about the target domain; in particular, the first task is to learn global label distributions over images and local distributions over landmark superpixels. These are easy to estimate because images of urban scenes have strong idiosyncrasies (e.g., the size and spatial relations of buildings, streets, cars, etc.). We then train a segmentation network while regularizing its predictions in the target domain to follow those inferred properties. In experiments, our method outperforms the baselines on two datasets and two backbone networks. We also report extensive ablation studies about our approach.Comment: This is the extended version of the ICCV 2017 paper "Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes" with additional GTA experimen

    Improved Dropout for Shallow and Deep Learning

    Full text link
    Dropout has been witnessed with great success in training deep neural networks by independently zeroing out the outputs of neurons at random. It has also received a surge of interest for shallow learning, e.g., logistic regression. However, the independent sampling for dropout could be suboptimal for the sake of convergence. In this paper, we propose to use multinomial sampling for dropout, i.e., sampling features or neurons according to a multinomial distribution with different probabilities for different features/neurons. To exhibit the optimal dropout probabilities, we analyze the shallow learning with multinomial dropout and establish the risk bound for stochastic optimization. By minimizing a sampling dependent factor in the risk bound, we obtain a distribution-dependent dropout with sampling probabilities dependent on the second order statistics of the data distribution. To tackle the issue of evolving distribution of neurons in deep learning, we propose an efficient adaptive dropout (named \textbf{evolutional dropout}) that computes the sampling probabilities on-the-fly from a mini-batch of examples. Empirical studies on several benchmark datasets demonstrate that the proposed dropouts achieve not only much faster convergence and but also a smaller testing error than the standard dropout. For example, on the CIFAR-100 data, the evolutional dropout achieves relative improvements over 10\% on the prediction performance and over 50\% on the convergence speed compared to the standard dropout.Comment: In NIPS 201

    Improving Facial Attribute Prediction using Semantic Segmentation

    Full text link
    Attributes are semantically meaningful characteristics whose applicability widely crosses category boundaries. They are particularly important in describing and recognizing concepts where no explicit training example is given, \textit{e.g., zero-shot learning}. Additionally, since attributes are human describable, they can be used for efficient human-computer interaction. In this paper, we propose to employ semantic segmentation to improve facial attribute prediction. The core idea lies in the fact that many facial attributes describe local properties. In other words, the probability of an attribute to appear in a face image is far from being uniform in the spatial domain. We build our facial attribute prediction model jointly with a deep semantic segmentation network. This harnesses the localization cues learned by the semantic segmentation to guide the attention of the attribute prediction to the regions where different attributes naturally show up. As a result of this approach, in addition to recognition, we are able to localize the attributes, despite merely having access to image level labels (weak supervision) during training. We evaluate our proposed method on CelebA and LFWA datasets and achieve superior results to the prior arts. Furthermore, we show that in the reverse problem, semantic face parsing improves when facial attributes are available. That reaffirms the need to jointly model these two interconnected tasks

    A Semi-Supervised Two-Stage Approach to Learning from Noisy Labels

    Full text link
    The recent success of deep neural networks is powered in part by large-scale well-labeled training data. However, it is a daunting task to laboriously annotate an ImageNet-like dateset. On the contrary, it is fairly convenient, fast, and cheap to collect training images from the Web along with their noisy labels. This signifies the need of alternative approaches to training deep neural networks using such noisy labels. Existing methods tackling this problem either try to identify and correct the wrong labels or reweigh the data terms in the loss function according to the inferred noisy rates. Both strategies inevitably incur errors for some of the data points. In this paper, we contend that it is actually better to ignore the labels of some of the data points than to keep them if the labels are incorrect, especially when the noisy rate is high. After all, the wrong labels could mislead a neural network to a bad local optimum. We suggest a two-stage framework for the learning from noisy labels. In the first stage, we identify a small portion of images from the noisy training set of which the labels are correct with a high probability. The noisy labels of the other images are ignored. In the second stage, we train a deep neural network in a semi-supervised manner. This framework effectively takes advantage of the whole training set and yet only a portion of its labels that are most likely correct. Experiments on three datasets verify the effectiveness of our approach especially when the noisy rate is high

    Query-Focused Video Summarization: Dataset, Evaluation, and A Memory Network Based Approach

    Full text link
    Recent years have witnessed a resurgence of interest in video summarization. However, one of the main obstacles to the research on video summarization is the user subjectivity - users have various preferences over the summaries. The subjectiveness causes at least two problems. First, no single video summarizer fits all users unless it interacts with and adapts to the individual users. Second, it is very challenging to evaluate the performance of a video summarizer. To tackle the first problem, we explore the recently proposed query-focused video summarization which introduces user preferences in the form of text queries about the video into the summarization process. We propose a memory network parameterized sequential determinantal point process in order to attend the user query onto different video frames and shots. To address the second challenge, we contend that a good evaluation metric for video summarization should focus on the semantic information that humans can perceive rather than the visual features or temporal overlaps. To this end, we collect dense per-video-shot concept annotations, compile a new dataset, and suggest an efficient evaluation method defined upon the concept annotations. We conduct extensive experiments contrasting our video summarizer to existing ones and present detailed analyses about the dataset and the new evaluation method
    • …
    corecore